Способ модификации поверхности. Классификация покрытий по функциональным свойствам и способу нанесения Метод модификации свойств поверхности изделия путем нанесения

Нанесение покрытий позволяет решить две технологические задачи . Первая состоит в направленном изменении физико-химических свойств исходных поверхностей изделий , обеспечивающих заданные условия эксплуатации, вторая – в восстановлении свойств поверхностей изделий , нарушенных условиями эксплуатации, включая потерю размеров и массы. Использование покрытий позволяет значительно повысить эксплуатационные характеристики изделий : износостойкость, коррозионостойкость, жаропрочность, жаростойкость и др.

В настоящее время продолжается совершенствование и поиск новых методов нанесения покрытий.

Изучение методов нанесения покрытий, их разновидностей ; термодинамики процессов при создании покрытий различного типа на металлических и неметаллических поверхностях; строения, структуры и эксплуатационных свойств покрытий; основного оборудования для газотермического и электротермического нанесения покрытий на металлопродукцию.

Изучение методов повышения качества изделий формированием многослойных и армированных покрытий; метрологического контроля технологических параметров формирования и их свойств .

Роль и место покрытий в современном производстве

Покрытия – это одно или многослойная структура нанесенное на поверхность для защиты от внешних воздействий (температуры, давления, коррозии, эрозии и так далее).

Различают внешние и внутренние покрытия .

Внешние покрытия имеют границу между покрытием и поверхностью изделия. Соответственно размер изделия увеличивается на толщину покрытия, при этом взрастает масса изделия.

Во внутренних покрытиях отсутствует граница раздела и размеры и масса изделия остаются неизменными, при этом изменяются свойства изделия. Внутренние покрытия еще называют модифицирующими покрытиями .

Различают две основные задачи, разрешаемые при нанесении покрытия

1. Изменение исходных физико-химических свойств поверхности изделий, обеспечивающих заданные условия эксплуатации;

2. Восстановление свойств, размеров, массы поверхности изделия, нарушенных условиями эксплуатации.

Назначение и области применения покрытий

Основной причиной появления и развития технологии нанесения защитных покрытий явилось стремление повысить долговечность деталей и узлов различных механизмов и машин . Оптимизация системы покрытия предполагает соответствующий выбор состава покрытия , его структуры, пористости и адгезии с учетом, как температуры нанесения покрытия , так и рабочей температуры , совместимости материалов подложки и покрытия , доступности и стоимости материала покрытия, а также возможности его возобновления, ремонта и надлежащего ухода во время эксплуатации

Применение недостаточно прочного покрытия, толщина которого за время работы заметно уменьшается , может привести к снижению прочности всей детали вследствие уменьшения эффективной площади ее полного поперечного сечения . Взаимная диффузия компонентов из подложки в покрытие и наоборот может привести к обеднению или обогащению сплавов одним из элементов. Термическое воздействие может изменить микроструктуру подложки и вызвать появление в покрытии остаточных напряжений. С учетом всего перечисленного оптимальный выбор системы должен обеспечивать ее стабильность, т. е. сохранение таких свойств, как прочность (в ее различных аспектах), пластичность, ударная вязкость, сопротивление усталости и ползучести после любого воздействия. Наиболее сильное влияние на механические свойства оказывает эксплуатация в условиях быстрого термоциклирования , а наиболее важным параметром является температура и время ее воздействия на материал ; взаимодействие с окружающей рабочей средой определяет характер и интенсивность химического воздействия.

Механические способы соединения покрытия с подложкой часто не обеспечивают нужное качество сцепления . Гораздо лучшие результаты обычно дают диффузионные методы соединения. Хорошим примером удачного диффузионного покрытия является алитирование черных и цветных металлов.

Классификация покрытий и методов их получения

В настоящее время существуют много разнообразных покрытия и методы их получения.

Во многих публикациях предлагаются различные схемы классификации неорганических покрытий по различным признакам .

Можно классифицировать покрытия по следующим основным принципам:

1. По назначению (антикоррозионные или защитные, жаростойкие, износостойкие, антифрикционные, светоотражающие, декоративные и другие);

2. По физическим или химическим свойствам (металлические, неметаллические, тугоплавкие, химостойкие, светоотражающие и т.д.);

3. По природе элементов (хромовое, хромоалюминиевое, хромокремниевое и другие);

4. По природе фаз, образующихся в поверхностном слое (алюминидные, силицидные, боридные, карбидные и другие)

Рассмотрим наиболее важные покрытия, классифицированные по назначению.

Защитные покрытия – основное назначение связано с их разнообразными защитными функциями . Большое распространение получили коррозионностойкие, жаростойкие и износостойкие покрытия. Широко применяются также теплозащитные, электроизоляционные и отражающие покрытия.

Конструкционные покрытия и пленки – выполняют роль конструктивных элементов в изделиях . Особенно широко также используются при производстве изделий в приборостроении, радиоэлектронной аппаратуры, интегральных схем, в турбореактивных двигателях - в виде срабатываемых уплотнений в турбине и компрессоре и др.

Технологические покрытия – предназначаются для облегчения технологических процессов при производстве изделий . Например, нанесение припоев при пайке сложных конструкций; производстве полуфабрикатов в процессе высокотемпературного деформирования; сварке разнородных материалов и т.д.

Декоративные покрытия – исключительно широко применяются при производстве бытовых изделий, украшений, повышении эстетичности промышленных установок и приборов, протезировании в медицинской технике и др.

Восстановительные покрытия – дают огромный экономический эффект при восстановлении изношенных поверхностей изделий , например гребных валов в судостроении; шеек коленчатых валов двигателей внутреннего сгорания; лопаток в турбинных двигателях; различного режущего и прессового инструмента.

Оптические покрытия уменьшают отражательную способность по сравнению с массивными материалами , в основном, благодаря геометрии поверхности. Профилеметрирование показывает, что поверхность некоторых покрытий представляет собой совокупность шероховатостей, высота которых колеблется от 8 до 15 мкм. На отдельных макронеровностях формируются микронеровности, высота которых колеблется от 0,1 до 2 мкм . Таким образом, высота неровностей соизмерима с длиной волны падающего излучения.

Отражение света от такой поверхности происходит в соответствии с законом Френкеля.

В литературных источниках встречаются различные принципы классификации методов нанесения покрытий. Хотя следует отметить, что единой системы классификации методов нанесения покрытий нет .

Хокинг и ряд других исследователей предложили три классификации методов нанесения покрытий:

1. По фазовому состоянию среды , из которой происходит осаждение материала покрытия;

2. По состоянию наносимого материала ;

3. По состоянию процессов , которые определяют одну группу методов нанесения покрытий.

Более подробно классификации методов нанесения покрытий представлены в таблице 1.1

Достоинства и недостатки различных методов нанесения покрытий представлены в таблице

Таблица 1.1

Таблица 1.2

Классификация методов нанесения покрытий по фазовому состоянию среды.

Таблица 1.3

Классификация методов нанесения покрытий по состоянию процессов определяющих одну группу методов

Таблица 1.4

Классификация методов по состоянию наносимого материала и способам изготовления

Изменение физико-химических свойств поверхностей при нанесении покрытий

Поверхностный слой (покрытие) играет определяющую роль в формировании эксплуатационных и других свойств изделий, создание его на поверхности твердого тела практически всегда изменяет физико-химические свойства в нужном направлении . Нанесение покрытий позволяет восстановить ранее утраченные свойства в процессе эксплуатации изделий . Однако чаще всего изменяют свойства исходных поверхностей изделий, полученные в процессе их производства. В этом случае свойства материала поверхностного слоя существенно отличаются от свойств исходной поверхности . В подавляющем большинстве меняется химический и фазовый состав вновь созданной поверхности, в результате получают изделия с требуемыми эксплуатационными характеристиками, например высокой коррозионной стойкостью, жаростойкостью, износостойкостью и многими другими показателями .

Изменение физико-химических свойств исходных поверхностей изделий может быть осуществлено созданием как внутренних, так и внешних покрытий . Возможны и комбинированные варианты (рис. 1.1).

При нанесении внутренних покрытий сохраняются неизменными размеры изделий (L и = const). Некоторые методы обеспечивают и постоянство массы изделия , в других методах - приращение массы ничтожно мало и им можно пренебречь . Как правило, отсутствует четкая граница модифицированного поверхностного слоя (δм ≠ const).

При нанесении внешних покрытий размер изделия увеличивается (L и ≠ const) на толщину покрытия (δпк). Возрастает и масса изделия .

Н
а практике встречаются и комбинированные покрытия. Например,при нанесении теплозащитных покрытий, отличающихся повышенным количеством несплошностей во внешнем слое , жаростойкость обеспечивается за счет внутреннего беспористого покрытия .

Рис. 1.1. Схематическое представление изменения физико-химических свойств поверхностей (Lи – исходный размер изделия; δ м – глубина внутреннего слоя; δ пк – толщина покрытия; σ а – адгезионная прочность покрытия; δ к – когезионная прочность; П – несплошности (поры и др.); О Н – остаточные напряжения)

Внутренние покрытия

Внутренние покрытия создаются различными способами воздействия на поверхность исходного материала (модифицирование исходных поверхностей). На практике широко используются следующие методы воздействия: механические, термические, термодиффузионные и высокоэнергетические с проникающими потоками частиц и излучений (рис. 1.2).

Встречаются и комбинированные методы воздействия , например термомеханические и др. В поверхностном слое происходят процессы, приводящие к структурному изменению исходного материала на глубину от нанометрового диапазона до десятых долей миллиметра и более . В зависимости от метода воздействия протекают следующие процессы :

изменение зеренного строения материала ;

искажение кристаллической решетки , изменение ее параметров и типа;

разрушение кристаллической решетки (аморфизация);

изменение химического состава и синтезирование новых фаз .

Рис. 1.2. Схема модифицирования поверхностей различными воздействиями (Р –давление; Т – температура; С – диффундирующий элемент; J – энергия потока; τ – время)

Внешние покрытия

Практическое значение внешних покрытий очень велико . Нанесение внешних покрытий позволяет не только решать задачи по изменению физико–химических свойств исходных поверхностей, но также восстанавливать их после эксплуатации .

Механизм и кинетика формирования приведены на рис. 1.3. Внешние покрытия часто выполняют роль конструкционного элемента , например покрытия – пленки при производстве интегральных схем. К настоящему времени разработано большое количество методов нанесения покрытий различного назначения из многих неорганических материалов .

Рис. 1.3. Схемы формирования покрытий на твердой поверхности

Для анализа физико-химических процессов , связанных с нанесением покрытий, их целесообразно систематизировать по условиям формирования . представляется возможным выделить следующие группы покрытий, формирующихся на твердой поверхности: твердофазные, жидкофазные, порошковые и атомарные.

Контрольные вопросы:

1. Дайте определение термина покрытие.

2. Какие две основные задачи решаются при нанесении покрытий.

3. Назовите основное назначение и области применения покрытий.

4. Назовите основные критерии, по которым классифицируют покрытия.

5. Какие покрытия называют защитными?

6. Назовите основные критерии классификации способов нанесения покрытий.

7. Назовите основные группы методов классифицированных по состоянию наносимого материала.

8. Как изменяются физико-химические свойства поверхности при нанесении покрытий?

9. Назовите основные отличия внутренних и внешних покрытий.

10. Приведите пример комбинированных покрытий.

Лекция 2. Физико–химические свойства поверхности твердого тела


Владельцы патента RU 2265075:

Изобретение относится к области металлургии, а именно к способам обработки поверхностей токопроводящих материалов. Предложен способ модификации поверхности токопроводящих тел путем ее разогрева переменным электрическим током, при этом для модификации поверхности используют импульсы тока длительностью 20-100 нс и с амплитудой, обеспечивающей глубину оплавления поверхности 1-10 мкм. Технический результат - разработка способа модификации поверхности токопроводящих тел для повышения эксплуатационных характеристик металлов и сплавов и управления требуемыми свойствами, такими как твердость, износостойкость, усталость и коррозионная стойкость. 3 ил.

Изобретение относится к области обработки электропроводящих материалов путем нагрева электрическим полем.

Уровень техники

Многие физико-механические свойства материалов сильно зависят от состояния поверхности. Например, твердость, усталость, износ, коррозионная прочность и трещиностойкость существенно улучшаются при уменьшении размера зерна и аморфизации поверхностного слоя. Известно большое количество способов воздействия на поверхность с целью ее упрочнения. К числу таких способов относятся плакирование и нанесение различных покрытий, лазерная и механическая обработка (например, пескоструйная), ионная имплантация и так далее . Методами быстрой закалки из расплава получаются аморфные и нанокристаллические материалы определенных химических составов. Критическая скорость охлаждения, требуемая для аморфизации, и температура стеклования зависят от природы химического состава расплава. Обычные скорости закалки для аморфизующихся систем составляют 10 5 -10 7 К/сек и достигаются в методах спиннингования расплава - охлаждение струи на массивном вращающемся блоке, прокатки расплава между холодными валками, распыление струи расплава газовыми потоками (газовая атомизация).

Такими способами получают либо порошки или чешуйки с характерными размерами 1-100 нм, либо тонкие ленты толщиной 10-100 мкм . Для аморфизации чистых металлов требуются чрезвычайно высокие скорости охлаждения -10 12 -10 14 К/сек , которые недостижимы при современных схемах быстрой закалки . Более медленные скорости закалки 10 2 -10 4 - К/сек применяют для получения так называемых массивных металлических стекол с характерными размерами порядка нескольких милиметров в сечении . Такие стекла получают из расплавов с широкой областью переохлаждения, наличие или отсутствие которой определяется химическим составом сплава. Малые размеры, высокая стоимость и ограниченность аморфизующихся составов при скоростной закалке ограничивают области применения аморфных сплавов. Достоинства поверхностной обработки готовых изделий очевидны. Так, например, метод ионной имплантации используется для аморфизации поверхностного слоя бомбардировкой ионами высоких энергий (например, бомбардировка никеля ионами P + при комнатной температуре - доза 10 17 ион/см 2 , энергия ионов 40 кэВ - приводит к образованию аморфной фазы в поверхностном слое ).

Хорошо известен метод лазерной аморфизации поверхности, который использует мощный импульсный лазерный луч, сканирующий по поверхности и оплавляющий небольшие участки поверхностного слоя, которые после прекращения действия лазерного излучения быстро затвердевают благодаря интенсивному отводу тепла в массивную подложку . Для более эффективной аморфизации в состав обрабатываемого материала вводят аморфообразующие элементы. Технологическими недостатками лазерной аморфизации являются сложность оборудования, высокая стоимость и относительно невысокая скорость обработки больших поверхностей. К металлургическим недостаткам данного способа следует отнести высокие внутренние напряжения, формируемые на границе аморфизованного слоя и кристаллической матрицы, и, главное, высокая макро- и микронеоднородность структуры, обусловленная сканированием лазерного пучка по обрабатываемой поверхности.

Другим способом термической обработки как всего объема, так и поверхностных слоев материала, выбранным в качестве прототипа, является индукционный нагрев - нагрев токопроводящих тел путем возбуждения в них электрических токов переменным электромагнитным полем. Для создания последнего используются токи низкой (50 Гц), средней (до 10 кГц) и высокой (свыше 10 кГц) частоты. Применяется для плавления металлов, поверхностной закалки деталей и т.д.

Привлекательность индукционного нагрева в промышленности связана, прежде всего, с технологической простотой, высокой производительностью, высокой точностью поддержания режима термической обработки, высокой степенью экологичности, легкостью встраивания в автоматизированные технологические линии. В настоящее время разработано и изготавливается индукционное нагревательное оборудование для разнообразного применения в промышленности:

Для объемной и поверхностной термообработки металлических изделий с целью закалки, нормализации, улучшения, отжига, отпуска, химико-термической обработки;

Для нагрева металлических заготовок перед пластической деформацией;

Для нагрева поверхностей металлических изделий для специальных целей.

Мощность современных установок индукционного нагрева металла составляет десятки - сотни кВт, рабочие частоты - единицы кГц - единицы - МГц.

Сущность изобретения

Сущность изобретения состоит в использовании мощных коротких электрических импульсов для модификации поверхности электропроводящих объектов.

1. повышения эксплуатационных характеристик металлов и сплавов;

2. управления требуемыми свойствами, такими как твердость, износостойкость, усталость, коррозионная стойкость;

3. снижения себестоимости продукции;

предлагается способ модификации структуры поверхности путем формирования аморфных, нано- и микрокристаллических поверхностных слоев. В отличие от прототипа мы предлагаем использовать мощный одиночный импульс тока, приводящий к требуемому разогреву поверхности (скин-слоя).

Скин-эффект состоит в локализации высокочастотного электрического тока в тонком приповерхностном слое проводника . Толщина скин-слоя δ оценивается как:

где ω - частота переменного тока, μ - магнитная проницаемость и σ - проводимость проводника. При протекании импульса тока длительностью t 0 плотностью j по проводнику с удельным сопротивлением ρ=1/σ выделяется теплота q:

Эта теплота расходуется на увеличение внутренней энергии, а следовательно, и температуры поверхностного скин-слоя, поскольку длительность импульса короткая и изменениями структуры и оттоком тепла через внешнюю поверхность можно пренебречь. Приращение температуры ΔT за малый интервал времени t 0 пропорционально количеству теплоты q:

где c v - удельная теплоемкость и ρ m - плотность проводящего слоя.

Для оценок будем полагать, что форма импульса тока длительности t 0 близка к полупериоду синусоидальной функции с частотой ω. Тогда можно полагать:

Пусть ток I протекает по цилиндрическому образцу радиуса R 0 . Тогда площадь сечения S скин-слоя толщиной δ составит величину:

Тогда можно найти связь полного тока I и плотности тока j:

Подставляя (1, 2, 4-6) в (3), получаем оценку зависимости величины разогрева поверхности от амплитуды тока I и радиуса образца R 0:

Подставляя (4) в (1), получаем выражения для определения требуемой длительности электрического импульса для модификации поверхностного слоя толщиной δ:

Из (7) можно найти амплитуду тока, необходимую для разогрева поверхности образца радиуса R 0 на величину ΔT:

Таким образом, выражения (8, 9) позволяют оценить параметры импульса тока, необходимого для прогрева до температуры ΔT поверхностного слоя толщиной δ.

Время остывания t f поверхностного слоя определяется диффузией тепла внутрь образца и зависит от его толщины (δ) и коэффициента температуропроводности α.

где λ - коэффициент теплопроводности.

Важнейшей характеристикой обработки поверхности, определяющей, в частности, возникновение аморфного поверхностного слоя, является скорость ее охлаждения T:

Используя (8, 10), получаем:

Таким образом, как следует из полученных выражений, для достижения температуры плавления скин-слоя и получения высокой скорости его охлаждения требуются короткие, мощные импульсы тока. Оценки показывают, что для обработки образцов диаметром порядка миллиметров и получения скорости охлаждения порядка 10 10 К/с требуются импульсы тока амплитудой порядка 100 кА и длительностью в десятки наносекунд.

Требуемая структура и толщина модифицированного слоя могут регулироваться путем контроля величины перегрева расплава или температуры поверхностного слоя в случае, если плавление поверхности не являются желательными, и скорости охлаждения, которые, в свою очередь, определяются амплитудой, длительностью приложенного импульса тока и начальной температурой образца. Следовательно, предлагаемый способ реализует достоинства поверхностной термической обработки и скоростной закалки.

Реализация заявляемого способа зависит от технических возможностей получения коротких импульсов тока большой амплитуды. Основная проблема состоит в обеспечении высокой скорости вывода энергии из генератора в нагрузку. В настоящее время для лучших конденсаторов с энергоемкостью ˜10 4 Дж это время составляет ˜300 нс . Время вывода энергии из батареи определяется как параметрами самих конденсаторов, так и нагрузкой. Добавление внешней нагрузки приводит к неизбежному возрастанию индуктивности системы и увеличению времени вывода энергии до ˜1 мкс.

В настоящее время наибольшие скорости вывода энергии получают в двухкаскадных генераторах, включающих в себя первичный генератор импульса тока (ГИН) и систему увеличения мощности (СУМ). ГИН обычно представляет собой батарею импульсных конденсаторов, включаемых по той или иной схеме (например, схеме Маркса ) и запитываемых от источника высокого напряжения. Система увеличения мощности предназначена для существенного (в 10-100 раз) увеличения плотности энергии, поступающей с ГИНа для получения на нагрузке импульса тока длительностью ˜(10-100) нс. Существует два типа СУМ - на основе промежуточного емкостного накопителя или с использованием индуктивного накопителя . Плотность энергии в индуктивных накопителях в десятки раз выше, чем в емкостных. Однако они требуют использования сильноточных быстродействующих размыкателей тока, переключающих генератор на нагрузку, что представляет собой серьезную научно-техническую проблему.

Более просты в реализации СУМы на основе одиночной (или двойной) формирующей линии коаксиального типа, заполненных глицерином (относительная диэлектрическая проницаемость ε=44) или деионизованной водой (ε=81). В этих средах можно на время заряда получить достаточно высокое значение напряженности электрического поля, а следовательно (с учетом достаточно большого значения высокочастотной диэлектрической проницаемости ε), и высокую плотность энергии, что обеспечивает получение короткого и мощного электрического импульса.

Целью изобретения является модификации поверхности электропроводящих объектов.

Поставленная цель достигается тем, что в способе модификации токопроводящих тел путем возбуждения в них электрического тока переменным электромагнитным полем новым является то, что для модификации поверхности используются мощные одиночные импульсы тока наносекундного диапазона длительности.

Ввиду того что из уровня техники неизвестны способы модификации поверхности, основанные на использовании наносекундных мощных импульсов тока, оно соответствует критерию "новизна".

Ввиду того что заявляемое изобретение очевидным образом не следует из аналогов и прототипа, оно соответствует критерию "изобретательский уровень".

Как будет показано ниже, ввиду высокого расчетного значения скорости охлаждения и ожидаемой сравнительно низкой удельной стоимости, область промышленного применения заявляемого изобретения может быть весьма широкой. Соответственно заявляемое изобретение соответствует критерию "промышленная применимость".

Перечень фигур чертежей

На фиг.1 представлены результаты расчета прохождения импульса тока амплитудой 240 кА и длительностью 40 нс по медному цилиндрическому образцу диаметром 1 мм. Представлены графики зависимостей от времени силы тока - I, текущего через образец, температуры поверхности образца - Т, радиуса фазового перехода (плавления) - R m и скорости изменения температуры с момента плавления - dT/dt.

На фиг.2 показана микрофотография поверхности медного циллиндрического образца длиной 10 мм и диаметром 0,8 мм, обработанного импульсом тока по заявляемому способу. Изображение поверхности получено в сканирующем электронном микроскопе Hitachi S-3500.

На фиг.3 показаны микрофотографии одного и того же участка поверхности циллиндрического образца нитинола (NuTi) диаметром 1,0 мм, обработанного импульсом тока по заявляемому способу. На фиг.3a показана поверхность образца в исходном состоянии. а на фиг.3b - после обработки. изображение поверхности получено в сканирующем электронном микроскопе Hitachi S-3500.

Сведения, подтверждающие возможность осуществления изобретения.

Для поверхностной модификации металлов могут быть использованы генераторы импульсов токов (ГИТ) наносекундной 20...100 нс длительности и амплитудой тока ˜100 кА. Как правило, такие генераторы выполнены на основе одиночной (двойной) формирующих линий (ФЛ) коаксиального типа, заполненных глицерином или деионизованной водой. Применение данных линий в конструкциях ГИТ обусловлено следующими факторами :

1. Длительность импульса тока определяется электрической длиной ФЛ и легко может меняться за счет использования либо дополнительных отрезков ФЛ, либо ФЛ различной электрической длины.

2. Время нарастания импульса тока в генераторе существенно зависит от индуктивности разрядного контура, в основном определяемой закорачивающим разрядником и, в значительной мере, высотой последнего. При установке в линию многоканального закорачивающего разрядника с током через каждый канал ˜10 кА взамен одноканального можно уменьшить длительность фронта импульса тока.

3. В случае электрического пробоя в линии жидкий диэлектрик не теряет своих электропрочностных свойств и может быть использован в дальнейшем.

В качестве примера реализации приведем результаты расчетов, выполненных для медного цилиндра диаметром 1 мм, начальная температура Т 0 =300 К. Параметры импульса тока выбирались таким образом, чтобы обеспечить глубину оплавления ˜1÷10 мкм.

Получено, что для медного образца при амплитуде импульса тока I=240 кА и его длительности t 0 =40 нс толщина проплавленного слоя составила 9 мкм. Процесс разогрева длился ˜0,1 мкс, процесс остывания ˜1 мкс. Максимальный разогрев достиг 1953 К (при температуре плавления и испарения меди соответственно 1356 К и 2868 К). Максимальная скорость охлаждения составила величину T=1,8·10 11 К/с.

Результаты расчетов подтверждаются экспериментально, как показано на фиг.2 для медного образца диаметром 0,8 мм, и на фиг.3 для образца из нитилона диаметром 1 мм, которые были обработаны по заявляемому методу. Плавление поверхностного слоя очевидно.

Таким образом, на основе заявляемого способа возможна разработка промышленных установок, обеспечивающих термическую обработку поверхности изделий.

Источники информации

1. Surface Engineering, Euromat-99, Vol. 11, ed. H.Dimigen, Willey-VCH, Germany (2000) 539 р.

2. В.П.Алехин, В.А.Хоник, Структура и физические закономерности деформации аморфных сплавов. М.: Металлургия, 1992, 248с.

3. А.И.Манохин, Б.С.Митин, В.А.Васильев, А.В.Ревякин, Аморфные сплавы. М.: Металлургия, 1992, 160с.

4. E.M.Breinan, Phys.Today V.29 (1976) рр.45-51.

5. A.Inoue, Bulk Amorphous Alloys, Practical Characteristics and Applications, Trans.Tech.Pub., Swizerland(1999) 146p.

7. I.R.Pashby, S.Bames and B.G.Bryden, Surface hardening of steel using a high power diode laser. Journal of Materials Processing Technology, 139 (2003) pp.585-588.

8. G.W.Stachowiak and A.W.Batchelor, Surface hardening and deposition of coatings on metals by a mobile source of localized electrical resistive heating. Journal of Materials Processing Technology, 57 (1996) pp.288-297.

Под физико-химическим модифицированием понимают целенаправленное изменение свойств поверхности в результате технологического внешнего воздействия. При этом имеется в виду изменение структуры материала в тонких поверхностных слоях вследствие физического воздействия (ионными и электронными пучками, низкотемпературной и высокотемпературной плазмы, электрического разряда и др.) или химического воздействия, приводящего к образованию на поверхности слоев химических соединений на основе базового материала (химическое, электрохимическое и термическое оксидирование, фосфатирование, сульфидирование, плазменное нитрирование и т.д.).

Очевидно, что отсутствует выраженная классификационная граница между процессами физико-химического модифицирования и поверхностного упрочнения.

Среди множества способов физико-химического модифицирования наиболее перспективными представляются ионная имплантация, анодирование, в частности импульсное (обработка в электролитной плазме), лазерное упрочнение.

Ионная имплантация является сравнительно новым способом физико-химического модифицирования, основанным на внедрении ускоренных ионов легирующих элементов в поверхностный слой.


б)


Рис. 19.12. Схема установки для ионной имплантации с линейным ускорителем (а) и З D-имплантаиии (б):

1 - источник ионов; 2 - система вытягивания ионов; 3 - сепаратор; 4 - фокусирующие магниты; 5 - линейный ускоритель; 6 - электростатическая отклоняющая система; 7 - поток ионов; 8 - упрочняемые детали

Имплантируемые ионы имеют малую глубину проникновения, однако их влияние распространяется намного дальше от поверхности.

Можно выделить следующие особенности ионной имплантации:

Возможность формирования на поверхности сплавов, которые нельзя получить в обычных условиях из-за ограниченной растворимости или диффузии компонентов. В ряде случаев равновесные пределы растворимости превышены на несколько порядков;

Легирование не связано с диффузионными процессами, за исключением модифицирования материалов ионной имплантации при большой плотности тока, когда наблюдается радиационно-стимулированная диффузия компонентов;

Процесс протекает при низких температурах (менее 150 °С), без изменения механических свойств материала. Метод позволяет обрабатывать термочувствительные материалы;

Отсутствует заметное изменение размеров деталей после имплантации;

Модифицированные поверхности не требуют дальнейшей финишной обработки;

Процесс хорошо контролируется и воспроизводится;


Экологическая чистота процессов;

Упрочняются только открытые поверхности, непосредственно находящиеся под воздействием облучения ионами;

Малая глубина модифицированного слоя;

Относительно высокая стоимость оборудования.

Установка для имплантации ионным лучом содержит источник ионов, систему «вытягивания» ионов 2, сепаратор ионов 3, магнитные фокусирующие линзы 4, линейный ускоритель 5, электростатическую отклоняющую систему б. На практике используются различные по конструк­ции источники ионов непрерывного и импульсного действия, генерирующие ионы газов (от водорода до криптона) и металлов (с горячим и холодным катодом, магнетронный, диаплазмотрон и др.). Выходящие из источника ионы неоднородны по составу. Для отделения посторонних ионов используется магнитный масс-сепаратор, который отклоняет от основной оси ионы, имеющие другую массу и заряд. «Очищенный» ионный луч фокусируется и ускоряется в линейном ускорителе. Сканирование ионного луча по поверхности упрочняемой детали производится отклоняющей системой 6 .

Для обеспечения равномерности упрочнения деталь вращается и поворачивается относительно луча.

Ионная имплантация ионами плазмы - иногда ее называют ЗБ-имплантация - выполняется в вакуумных камерах, где тлеющим или дуговым разрядом создают ионизированную среду, а на деталь подается импульсное высокое напряжение, обеспечивающее ускорение ионов в направлении бомбардируемых поверхностей. Высокоэнергетический ионный поток может формироваться непосредственно в процессе горения импульсного самостоятельного разряда между заземленной вакуумной камерой и изделием, являющимся катодом.

Ионы, ускоренные в поле прикатодного падения малой толщины, эффективно модифицируют поверхность изделия, которое может иметь сложную объемную форму. Падающие ионы генерируют электронный пучок с поверхности изделия, который, взаимодействуя с плазмой, обеспечивает самоподдержание разряда. Этот метод имеет определенные преимущества перед лучевыми методами за счет простоты и относительно низкой цены реализации технологических процессов. Он может сочетаться с другими ионно-плазменными методами обработки, такими, как магнетронное, вакуумно-дуговое и плазменно-термическое напыление, ионное азотирование и др.

При высокоэнергетической ионной имплантации для упрочнения металлов и сплавов, керамик, полимеров используются ионы газов с энергией до 100 кэВ.

Обработка высокоэнергетическими ионами азота эффективно повышает стойкость режущего и штампового инструмента, усталостную прочность деталей.

Имплантация атомов внедрения (азот, углерод и бор) способствует повышению износостойкости и сопротивления усталости сталей. Эти элементы обладают свойством сегрегации к дислокациям даже при комнатной температуре, что блокирует их движение и упрочняет поверхностный слой, а это в свою очередь препятствует развитию усталостных трещин.

При ионной имплантации никеля бором усталостная прочность увеличивается более чем на 100 %.

Увеличение усталостной прочности обусловлено не действием остаточных напряжений сжатия, возникающих при ионной имплантации, как считалось раньше, а торможением развития усталостных трещин вследствие снижения подвижности дислокаций.

Для повышения антифрикционных свойств может выполняться имплантация ионов молибдена и двойного количества ионов серы. Совместная имплантация может стать новым методом формирования антифрикционных и других специальных легированных слоев.

Имплантируя титан, получают на поверхности аморфную фазу Ti-C-Fe, что приводит к снижению трения и износа.

Ионная имплантация широко используется для повышения коррозионной стойкости стальных деталей. С этой целью имплантируют ионы.

Локальная термическая обработка осуществляет модифицирование структуры поверхностного слоя. При этом обеспечиваются такие температурно-временные режимы и результаты упрочнения, которые сложно или невозможно получить традиционными способами термической обработки, а именно:

Высокие скорости нагрева и охлаждения (скорости нагрева достигают величин 10 4 ... 10 8 К/с, а скорости охлаждения - 10 3 ... 10 4 К/с в зависимости от времени воздействия и энергии излучения, а также от режимов работы лазера). Такие режимы нагрева и охлаждения приводят к нерав­новесному протеканию фазовых превращений, к смещению критических точек А с и А, образованию пересыщенных твердых растворов с мелко­дисперсными структурами вплоть до аморфных. В результате формируется слой с повышенной твердостью (превышает на 15 ... 20 % твердость после закалки существующими способами), с хорошим сопротивлением износу и схватыванию при трении;

Возможность упрочнения поверхностей в труднодоступных местах (полости, углубления), куда луч лазера может быть введен с помощью оптических устройств;

Использование лазера позволяет резко уменьшить глубину закаленного слоя и эффективно управлять его величиной.

Лазерное закаливание используется для упрочнения режущего и мерительного инструмента, рабочих кромок матриц и пуансонов на глубину до 0,15 мм (импульсное излучение) и до 1,5 мм (непрерывное излучение). На инструментальных сталях твердость составляет 63 ... 67 HRC. Шероховатость обрабатываемой поверхности при этом не изменяется.

Установлено, что использование лазерного излучения в качестве источника нагрева при термопластическом упрочнении никелевых сплавов позволяет получать в поверхностном слое остаточные напряжения сжатия величиной до 10 ГПа.

При лазерной термической обработке можно создать условия избирательного испарения выступов неровностей, которые приводят к снижению шероховатости поверхности.

Лазерная наплавка является одним из наиболее перспективных способов восстановления ответственных деталей ГТД, в частности лопаток турбин и компрессоров. Ее основными достоинствами являются возможность устранения небольших дефектов без разогрева примыкающей к дефекту поверхности и отсутствие поводок при наплавке.

Лазерную наплавку производят в камерах с защитной атмосферой или с поддувом инертного газа. В качестве присадочных материалов используют проволоку, фольгу или порошковые материалы.

Лазерная наплавка порошковыми металлическими сплавами при минимальном термическом воздействии позволяет повысить в несколько раз работоспособность деталей в тяжелых температурных, эрозионных и других условиях эксплуатации.

Мы осуществляем металлизацию следующих типов поверхностей:
металл, пластик, керамика, стекло.

Дополнительная услуга: восстановление отражателей фар.

Металлизация — метод модификации свойств поверхности изделия путем нанесения на его поверхность слоя металла. Металлизации подвергаются как неметаллические поверхности (стекло, бетон, пластмасса) так и металлические. В последнем случае металлизацией наносится другой материал, например, более твердый или коррозийно-стойкий (хромирование, цинкование, алюминирование). Часто «металлизацией» называют напыление металла методами: химической, электрохимической, вакуумной и гальванической.

Предприятие использует химическую, электрохимическую и вакуумный методы металлизации. В зависимости от среды использования детали наши специалисты подберут наиболее подходящий метод напыления и финишной обработки.

Для химической металлизации используются реагенты собственного производства:

В концентратах содержится натуральное серебро (азотнокислое, тип - ХЧ). Проверенная годами рецептура позволяет создавать качественные реактивы, которые при правильном разведении и использовании дадут высокое качество покрытия. В результате покрываемое изделие будет иметь натуральные зеркальные качества. Чтобы купить и применять серебро, необходимо иметь лицензию , разрешающую работать с драг.металлами, и стоять при этом на спец.учете в Пробирной Инспекции РФ . Все выпускаемые нами концентраты, которые используются в химической металлизации , прошли проверку и получили паспорт качества.

Цены

Расчет стоимости металлизации зависит от площади поверхности изделия. Точная цена получается в результате расхода материалов, т.е. когда изделие уже покрыто металлом, и с ним произведены финишные работы. Поэтому лучше всего позвонить и пообщаться с нашим специалистом для предварительной оценки стоимости работ.

Ориентировочный диапазон цен:

Ручка автомобиля — 1500 - 2500р.
- решетка радиатора (на примере мерседес w210) - 5100р.
- автомобильный диск R17 - 8500р. — Внимание! Диски принимаются в работу разбартованными, т.е. без резины! Диски должны быть чистыми! Сделайте разбортовку колес в любой шиномонтаже, там же предоставляется услуга чистки.


Отдельно выполненные детали в хроме



Условия заказа и оплаты

Обратите, пожалуйста, внимание! Срочные заказы с готовностью на следующий день мы не берем!

Минимальный заказ — 10 000 руб.
Предоплата 80% от стоимости заказа.
Срок выполнения заказов индивидуальны — уточняйте у специалиста по телефону: +7-961-162-02-34

Эл.почта: att777 {а} yandex.ru

Стеклянный шар (основа - пластик, диаметр 30см.)

(! без финишного покрытия и полировки!)

Восстанавливаем отражатели фар! Полноценная металлизация (не хромирование!) пластиковой или металлической поверхности корпуса отражателя.

В итоге получается настоящее зеркало! Отражатель фары будет как новый!

Остались вопросы? Звоните или задайте свой вопрос через онлайн-форму:

Похожие публикации