Биохимические методы очистки сточных вод - файл n1.doc. Очистка сточных вод биохимическими методами Биохимическая очистка сточных вод

Биологический (биохимический) метод очистки применяют для очистки произ­водственных сточных вод от многих растворенных органических веществ., в том числе и от нефтепродуктов.

Сточные воды, направляемые на биохимическую очистку, характеризуются ве­личиной БПК и ХПК. БПК - это биохимическая потребность в кислороде, использованного при биохимических процессах окисления органи­ческих веществ за определенный промежуток времени (2,5,8,10,20 сут) в мг О 2 на литр сточной воды (или на 1 мг вещества). Например, БПК 5 - биохимическая потреб­ность в кислороде за 5 сут, БПК полн. - полная биохимическая потребность в кислороде до окончания процесса биоокисления.

Процесс биологической очистки основан на способности микроорганизмов ис­пользовать растворенные органические вещества для питания в процессе своей жиз­недеятельности. Контактируя с органическими веществами, микроорганизмы частично разру­шают их, превращая в воду, диоксид углерода, нитрит- и сульфат-ионы. Другая часть вещества идет на образование биомассы. Такое разрушение органических веществ на­зывают биохимическим окислением.

Известны аэробные и анаэробные методы биохимической очистки сточных вод. Аэробный метод основан на использовании аэробных групп организмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40°С. При аэробной очистке микроорганизмы культивируются в активном иле. Активный ил состоит из живых организмов и твердого субстрата. Живые организмы представляют собой сообщество множества видов микроорганизмов, называемых биоценозом.

Живые орга­низмы представлены скоплениями бактерий и одиночными бактериями, простейши­ми, червями, плесневыми грибами, дрожжами и редко - личинками насекомых, рач­ков, водорослями. Это сообщество называется биоценозом. Биоценоз активного ила представлен в основном двенадцатью видами микроорганизмов и простейших.

Анаэробные методы очистки протекают без доступа кислорода, их ис­пользуют главным образом для обезвреживания осадков.

Качество ила определяется скоростью его осаждения и степенью очистки воды. Крупные хлопья оседают быстрее, чем мелкие. Процесс биохимического окисления протекает интенсивнее в мелких, взвешенных хлопьях ила, так как при этом облегчается и ускоряется внутренняя диффузия органических примесей, т.е. диффузия их во внутриклеточном пространстве организмов. Именно по этой причине для эффектив­ности процесса активный ил должен систематически перемешиваться в сооружении очистки. Состояние ила характеризует иловый индекс, который представляет собой отношение объема неосаждаемой части активного ила к массе высушенного осадка после 30-минутного отстаивания. Чем хуже оседает ил, тем более высокий иловый индекс он имеет.

Биопленка растет на наполнителе биофильтра, она имеет вид слизистых обрас­таний толщиной 1-3 мм и более. Цвет ее меняется с изменением состава сточных вод от серовато-желтого до темно-коричневого. В биоценозе биопленки более расширен­ный видовой состав, чем в активном иле. Личинки комаров, мух, клещей поедают ак­тивный ил и биопленку и тем способствуют более рыхлой их структуре, что, в свою очередь, как уже было сказано выше, способствует большей эффективности очистки.

Показатель, характеризующий биохимическую деятельность биоценоза назы­вается биохимической активностью. Этот биохимический показатель зависит от со­става примесей в сточной воде, и является параметром, необходи­мым для расчета и эксплуатации очистных сооружений при биологической очистке. Этот показатель определяется как отношение БПК ПОЛН /ХПК и колеблется в очень широком диапазоне для различных сточных вод. По биохимическому показателю производственные сточные воды делятся на четыре группы. Первая группа имеет са­мый высокий биохимический показатель выше. Именно эту группу составляют сточ­ные воды пищевой промышленности. Чем больше в сточной воде минеральных при­месей в сравнении с органическими, тем ниже биохимический показатель, и тем со­ответственно ниже биоразлагаемость сточных вод.

На эффективность биохимической очистки влияют ряд факторов:

Температура (20-30ºС);

Аэрация кислорода (количество растворенного в воде кислорода);

Присутствие в сточной воде биохимических элементов и их соединений (таких как N, P,K,Ca и другие).

В искусственных условиях очистку проводят в аэротенках или в биофильтрах.

Аэротенками называют железобетонные аэрируемые резервуары, в которых биохимическое окисление проходит по мере протекания через них смеси сточной во­ды и активного ила. Аэрация необходима для насыщения воды кислородом и поддер­жания ила во взвешенном состоянии.

Одна из схем биологической очистки с приме­нением аэротенка показана на рис.1.

Рис. 1. Схема биологической очистки сточных вод

Сточную воду направляют в первичный отстойник, куда для улучшения осаж-дения взвешенных частиц можно добавить избыточный активный ил из вторичного отстойника. При этом активный ил работает и как коагулянт, агрегирующий и осаж­дающий взвешенные примеси. Затем осветленная вода поступает в преаэратор-усреднитель, в который также направляется часть избыточного ила из вторичного от­стойника. В преаэраторе сточные воды усредняются, аэрируются в течение 15-20 мин и здесь происходит первичное окисление, т.е. очистка от наиболее легко окисляемых примесей. Кроме того, в преаэраторе извлекаются за счет сорбции активным илом ионы тяжелых металлов и другие токсичные вещества, неблагоприятно влияющие на процесс биохимического окисления.

Из преаэратора сточная вода поступает в собственно аэротенк, в котором про­исходит основной этап биохимического окисления. Перед аэротенком сточная вода должна содержать не более 150 мг/л взвешенных веществ (для этого и работает пер­вичный отстойник), температура сточной воды должна быть не ниже 20 и не выше 30°С, рН - в пределах 6,5-9. Время аэрации в аэротенке определяется расчетом: обычно принимается до 10, иногда до 20, но не менее двух часов.

После биохимического окисления в аэротенке вода с хлопьями активного ила (биомасса его в аэротенке увеличивается) поступает во вторичный отстойник, где ак­тивный ил отделяется в виде шлама и утилизируется, частично возвращаясь в преаэратор и в аэротенк, а основная масса избыточного ила используется в качестве удобрения на полях. Очищенная вода из вторичного отстойника собирается через вы­пускной лоток.

Они применяются для очистки бытовых и производственных сточных вод от органических веществ, а также от сероводорода, сульфидов, аммиака, нитритов. Процесс очистки основан на способности микроорганизмов использовать эти вещества на обеспечение своей жизнедеятельности. Очистка осуществляется сообществом множества различных бактерий, простейших, а также грибов, водорослей, которые образуют биологически активный ил.

Известны аэробные и анаэробные методы биохимической очистки.

Аэробные методы основаны на использовании аэробных групп микроорганизмов, для жизнедеятельности которых необходим постоянный приток воздуха.

Анаэробные биохимические процессы протекают без доступа кислорода. Их используют для обработки осадков. Оптимальная температура очистки 20-40 °С.

Достоинства биохимической очистки: можно удалять из сточных вод широкий спектр органических и некоторые неорганические вещества, простота аппаратуры, низкие эксплуатационные затраты, возможна высокая степень очистки. Недостатки метода: высокие капитальные затраты (огромные сооружения), необходимость точного соблюдения технологического режима очистки, разбавления сточных вод из-за высокой концентрации примесей, возможно наличие примесей, отравляющих микроорганизмы.

Механизм процесса очистки микроорганизмами веществ из сточных вод условно делят на три стадии: массопередачу вещества из жидкости к поверхности клетки путем конвенции воды и диффузией примесей; диффузию вещества примеси через оболочку клетки микроорганизма вследствие градиента концентрации; процесс превращения вещества в клетке (метаболизм) с выделением энергии и синтезом нового клеточного вещества.

Скорость массопередачи определяется законами диффузии и гидродинамики. Вихревое движение потока разрушает хлопья активного ила на мелкие колонии микробов и приводит к быстрому обновлению поверхности их раздела со средой. Скорость биохимических превращений в клетке, их последовательность определяется ферментами. Синтез новых белковых веществ (анаболические превращения) протекает с затратой энергии Q, например:

Биохимическое аэробное окисление органического вещества клетки (катаболизм) или сточной воды сопровождается потреблением кислорода и выделением энергии Q:

Условия биохимической очистки. На эффективность биохимической очистки сточной воды оказывают влияние следующие факторы: равномерность поступления сточной воды, концентрация в ней примесей, наличие кислорода в воде, ее температура, рН, перемешивание воды, присутствие в воде примесей, токсичных для микроорганизмов, концентрация биомассы. Снабжение сооружений биохимической очистки кислородом воздуха должно быть непрерывным и в таком количестве, чтобы в очищенной воде содержание кислорода было не менее 2 мг/л. Оптимальная температура для аэробных процессов 20-30 °С, хотя отдельные бактерии выдерживают температуру от -8 до 85 °С. Оптимальная реакция среды — нейтральная (рН около 6,5). Количество взвешенных частиц для биологических фильтров должно быть не более 100 мг/л. Оптимальное количество микроорганизмов в виде активного ила 2-4 г/л. Наиболее эффективен молодой активный ил возраста 2-3 суток.

Регенерация активности ила: его аэрация в отсутствие питательных веществ.

Для жизнеобеспечения микроорганизмов, очищающих сточные воды, необходимо наличие в ней достаточного количества соединений углерода, азота, фосфора. Однако соединения ртути, свинца, сурьмы, серебра, хрома, кобальта являются клеточными ядами. Их концентрация должна быть ниже ПДК для микроорганизмов.

Технология биохимической очистки

Аэробную очистку проводят в естественных условиях и в искусственных сооружениях.

Естественные условия: поля орошения и фильтрации, биологические пруды.

Поля орошения — это сельскохозяйственные угодья, предназначенные для очистки сточных вод и одновременного выращивания растений. На полях фильтрации растения не выращивают. Обычно это резервные участки типа прудов для принятия сточных вод. На полях орошения очистка сточных вод основана на воздействии микрофлоры почвы, воздуха, солнца и жизнедеятельности растений. Солей в стоках должно быть меньше 4-6 г/л. Сточные воды подаются на поля орошения в летний период через 5 дней.

Биологические пруды — искусственные водоемы глубиной 0,5-1 м, хорошо прогреваемые солнцем и заселенные водными организмами. Они могут быть проточные (серийные или каскадные) и непроточные. Время пребывания воды в прудах с естественной аэрацией от 7 до 60 суток, с искусственной — 1-3 суток. В последних ступенях каскадных прудов разводят рыбу, что позволяет избежать образования ряски. В непроточных прудах сточная вода подается после ее отстаивания и разбавления. Продолжительность очистки — 20-30 суток.

Достоинства биологических прудов — невысокая стоимость строительства и эксплуатации. Недостатки: сезонность работы, большая площадь, низкая окислительная способность, трудность чистки.

Биохимическая очистка в биофильтрах

Б иофильтры это большие круглые или прямоугольные сооружения из железобетона или кирпича, загруженные фильтрующим материалом, на поверхности которого выращивается биопленка. Аэрация их может быть естественной и искусственной. По типу загрузки материала биофильтры делятся на две группы: с объемной (зернистой) и плоской загрузкой. гравий, щебень, галька, шлак, керамзит, кольца, кубы, шары. металлические, тканевые и пластмассовые сетки, решетки, гофрированные листы, пленки.

Биофильтры с объемной загрузкой могут быть трех типов: капельные, высоконагружаемые, башенные. Капельные биофильтры наиболее просты, загружаются мелким материалом высотой 1-2 м, имеют производительность до 1000 м 3 /сутки и обладают высокой степенью очистки. Высоконагружаемые биофильтры заполняют крупным материалом высотой 2-4 м. Высота загрузки башенных биофильтров — 8-16 м, производительность до 50 тыс. м 3 /сутки.

Применение находят также биофильтры с плоской загрузкой, обладающие более высокой окислительной способностью, погружные (дисковые) биофильтры и биотенк-биофильтры. В них в шахматном порядке по горизонтали и вертикали размещены лотки в виде блюдец, которые сверху заполняются сточной водой до их переполнения и перелива избытка воды. Снаружи лотков образуется активная биопленка. Она обеспечивает высокую эффективность очистки воды. Недостатки биофильтров: заиливание фильтров, снижение их окислительной способности, появление неприятных запахов.

Биохимическая очистка в аэротенках. Аэротенки — крупные 1 500-15 000 м 3 железобетонные сооружения глубиной 3-6 м со свободно плавающим в воде активным илом, бионаселение которого использует загрязнения сточных вод для своей жизнедеятельности. Объем сточных вод, очищаемых при использовании аэротенков, весьма большой: от нескольких сот до миллионов кубических метров в сутки.

Классификация аэротенков. Ее показатели:

    конструкция: круглые, прямоугольные, шахтные, комбинированные, фильтротенки, флототенки;

    режим сточных вод: проточные, полупроточные, капитальные, с переменным уровнем;

    структура потока: аэротенки-вытеснители, аэротенкисмесители, аэротенки с рассредоточенной подачей сточной воды, окситенки (рис. 4.11);

    аэрация: пневматическая, комбинированная гидродинамическая, пневмомеханическая;

    способ регенерации активного ила: в отдельном аппарате, в совмещенном аппарате;

    число ступеней: одно-, двух-, многоступенчатые;

    высокая, обычная, низкая.

В аэротенках-вытеснителях (рис. 4.11а) нагрузка загрязнений на ил максимальна в начале и минимальна в конце процесса. Их длина достигает 50-150 м, объем от 1,5 до 30 тыс. м 3 .

Аэротенки-смесители (рис. 4.11 б) наиболее пригодны для очистки концентрированных производственных сточных вод (БПК п до 1 г/л) при значительных колебаниях их расхода и концентрации загрязнения. Их недостаток — высокая остаточная концентрация примесей в очищенной воде.

Рис. 4.11. Схемы аэротенка-вытеснителя (а), аэротенка-смесителя (б), аэротенка с рассредоточенной подачей сточной воды (в)

В аэротенках с равномерной подачей сточной воды нагрузка на ил по его длине равномерно уменьшается (рис. 4.11в). Они используются для очистки смесей промышленных и городских стоков.

В окситенках вместо воздуха применяется технический кислород. Это позволяет увеличить в 5-10 раз окислительную способность процесса, повысить дозы активного ила до 6-10 г/л.

Важный фактор биологического окисления примесей — кислород. При механической аэрации воду с илом перемешивают мешалками, турбинками, щетками и т. п. Пневматическую аэрацию в зависимости от размера пузырьков воздуха подразделяют на три вида: мелкие пузыри (1-4 мм) при подаче воздуха в аэротенк под давлением через керамические или пластинчатые диффузоры; средние пузыри (5-10 мм) — подача воздуха через перфорированные трубы, щелевые устройства; крупные пузыри (>10 мм) — подача воздуха через сопла, трубы.

Рис. 4. 12. Технологическая схема очистки сточных вод в азротенке с регенерацией ила: 1 — аэротенк; 2 — отстойник; 3 — насосная станция; 4 — регенератор ила

На рисунке 4.12 приведена технологическая схема аэротен ка с регенерацией ила. Сточная вода подается в аэротенк 1, где обрабатывается активным илом. Смесь воды с илом поступает в отстойник 2, из которого после отстоя через верхнюю часть выводится очищенная вода, а через донное отверстие — отстоянный ил. Из насосной станции 3 часть ила через его регенератор 4 возвращается в аэротенк, а избыточного часть ила отправляется на переработку в метантенк.

При высокой исходной концентрации органических примесей в воде (БПКn > 0,15 г/л) используют двухступенчатую очистку с окислением 50-70% примесей на первой ступени.

Биохимические методы очистки сточных вод основаны на ис­пользовании микроорганизмов, окисляющих органические вещест­ва, присутствующие в сточных водах в коллоидном и растворен­ном состоянии. Микроорганизмы разрушают молекулы различных соединений, используя вещества, необходимые для их питания, размножения и увеличения биологической массы - активного ила и биопленки.

Активный ил представляет собой комочки и хлопья размером от 5 до 150 мкм, состоящие из живых организмов и твердого суб­страта. К живым организмам активного ила относится скопление бактерий, простейших червей, бактериальных клеток, грибов, дрожжей. Твердым субстратом является отмершая часть микроор­ганизмов активного ила. Биопленка имеет вид слизистых обраста­ний толщиной 1-3 мм на наполнителе биофильтра и состоит так­же из бактерий, грибов, дрожжей и других организмов.

Для нормальной жизнедеятельности микроорганизмам нужны различные химические элементы, которые они усваивают из сточ­ных вод. Недостающие элементы - азот, фосфор, калий - искус­ственно вводят в очищаемую сточную воду.

Биохимические методы обычно применяют для окончательной очистки сточных вод после использования физико-химических ме­тодов обработки. С помощью физико-химических методов удаляют вещества, не поддающиеся биологической очистке, или снижают их концентрацию. В настоящее время широко применяют совмест­ную очистку бытовых и производственных сточных вод, так как в бытовых стоках содержатся растворенные вещества, наиболее легко усваиваемые микроорганизмами.

Процесс биохимической очистки сточных вод осуществляется в устройствах различного типа: аэротенках, биофильтрах и прудах. Активный ил разрушает различные соединения в аэротенках, где осуществляется искусственная аэрация сточных вод и ила, нахо­дящегося во взвешенном состоянии. Биопленка прикрепляется к наполнительной массе биофильтра и соприкасается с воздухом при фильтрации сточных вод.




аэротенки имеют различную форму. Благо­даря аэрации сточных вод и ила, активный ил разрушает различ­ные соединения. Аэрировать сточные воды в аэротенках можно механическими и пневматическими методами. Чем мельче диспер­гирован воздух, тем больше поверхность контакта пузырьков воз­духа с водой, т. е. тем полнее насыщаются сточные воды кислоро­дом, необходимым для жизнедеятельности микроорганизмов. Ино­гда используют поверхностную аэрацию сточных вод, заключаю­щуюся в поверхностном разбрызгивании воды, откачиваемой из нижней части аэротенка. При пневматической аэрации часто вместо воздуха вводят кислород. Применение кислорода, с одной стороны, удорожает процесс биохимической очистки, сточных вод, а с другой - значительно интенсифицирует его, так как почти в два раза увеличивается концентрация активного ила и уменьша­ется время, необходимое для разложения микроорганизмами раз­личных веществ.

По схеме полной биохимической очистки сточных вод (рис. 111) сточная вода поступает в усреднитель 1 , снабженный решеткой для механической очистки вод от крупных частиц и различных предметов. Из усреднителя вода подается в песколовку 2 , пред­ставляющую собой цилиндроконический резервуар с тангенциаль­ным вводом воды. В песколовке осаждается зернистая фракция - песок. Слив песколовки поступает в первичный отстойник 3 , в ко­тором осаждается тонкозернистая фракция взвешенных частиц. Слив первичных отстойников совместно с возвратным илом пода­ется в аэротенки 4 с поперечным сечением прямоугольной формы, где с помощью микроорганизмов разлагаются различные органи­ческие и минеральные вещества. В аэротенках сточные воды аэри­руют сжатым воздухом. Из аэротенка сточную воду с активным илом направляют на отстаивание во вторичный отстойник 5 для улавливания активного ила. Слив вторичного отстойника поступа­ет в контактный резервуар 6, в который подают также жидкий хлор для обеззараживания сточных вод. Продолжительность кон­тактирования сточных вод с жидким хлором 15-20 мин. После контактирования с хлором сточные воды отстаивают в чане 7 . а затем подают в буферные пруды, в которых очищенная вода долж­на находиться не менее З сут.

Ил из вторичного отстойника откачивают насосами станции 8 в илоуплотнитель 9 . Часть ила - возврат - подают в аэротенк. Уплотненный ил и осадок первичного отстойника подают в метантенк 10 - герметически закрытый резервуар для брожения осадка без доступа кислорода. Осадок в метантенке интенсивно переме­шивается пропеллерной мешалкой. Интенсивность брожения осад­ка повышается при температуре 50-55 °С, поэтому в метантект из котельной 12 подают пар. При брожении 1 т осадка образуется около 10 м 3 газа. Газ, выделяемый в результате брожения и со­держащий 70-75 % метана и 20-25 % углекислого газа, сжига­ют в котельной. Из метантенка осадок подают на иловую площад­ку 11 с искусственным или естественным дренирующим основа­нием.

Дренажная вода иловых площадок перекачивается в первич­ный отстойник. На иловых площадках осадок обезвоживается до содержания 75-80 % твердого. После этого его можно использо­вать в качестве удобрений. Иногда осадок метантенков обезвожи­вают в фильтр-прессах типа ФПАКМ и в термических сушилках.

В биофильтрах окисление загрязнений сточной воды осуществ­ляется при ее фильтровании через наполнитель фильтра, на по­верхности которого растут и развиваются организмы биопленки. Биофильтры представляют собой сооружения чаще цилиндриче­ской формы, выполненные из бетона, железобетона или кирпича. Биофильтр заполняют фильтрующим материалом, состоящим из кусков размером 4-6 см. Материал должен быть шероховатым для лучшего удержания биопленки. Сточная вода в биофильтре создает условия для развития микроорганизмов, прикрепляющихся к фильтрующему материалу. При фильтровании сточных вод че­рез наполнитель фильтра биопленкой разлагаются различные со­единения сточных вод. Очищенные воды концентрируются на не­проницаемом для воды днище фильтра, откуда отводятся по дре­нажным трубам.

Биофильтры подразделяют на высоконагруженные и слабона-груженные или капельные. Высота высоконагруженного фильтра составляет 2-4 м, а капельного менее 2 м. В высоконагруженных фильтрах применяют искусственную вентиляцию сточных вод.

Производительность по очищаемой воде высоконагруженных и капельных биофильтров соответственно 10-30 и 0,5-3 м 3 /(м 2 ·сут).

Оптимальные условия работы биофильтров следующие: рН сточных вод 7-8; температура 18-25 °С; концентрация в сточных водах, элементов калия, азота и фосфора и взвешенных веществ не более 100 мг/л.

Сточные воды очищают биохимическими методами и в естественных условиях: на полях орошения и фильтрации и в биологи­ческих прудах. Поля орошения и фильтрации используют для очистки стоков сравнительно редко. Обычно для окончательной очистки и отстаивания сточные воды направляют в биологические пруды.

Биохимическое окисление - широко применяемый на практике метод очистки производственных сточных вод. Главным действующим началом при биохимической очистке являются микроорганизмы, использующие в качестве питательных веществ и источников энергии растворенные органические и неорганические соединения. Из них микроорганизмы берут все необходимое для размножения, увеличивая при этом активную биомассу.

Загрязняющие сточную воду вещества при их аэробной биохимической очистке окисляются активным илом, представляющим собой биоценоз, обильно заселенный микроорганизмами. Активный ил разрушает органические и неорганические соединения в специальных сооружениях - аэротенках - в условиях аэрации воздухом сточной воды и ила, находящегося благодаря аэрации во взвешенном состоянии. В процессе очистки микроорганизмы активного ила, контактируя с органическими и неорганическими веществами сточных вод, разрушают их при помощи различных ферментов.

Для создания протоплазмы клетке микроорганизмов нужны биогенные элементы: углерод, азот, кислород, водород, фосфор, калий, железо, магний и различные микроэлементы. Многие из этих элементов бактериальная клетка может почерпнуть из загрязнений сточных вод коксохимического производства. Недостающие элементы, чаще всего фосфор и реже калий, приходится добавлять в очищаемую сточную воду в виде ортофосфорной кислоты и соли (марганцовокислый калий).

Для нормального процесса синтеза клеточного вещества, а следовательно, и для эффективного процесса очистки сточной воды в среде должна быть достаточная концентрация всех основных биогенных элементов, которая для сточных вод коксохимического производства определяется соотношением:

БПК полн: N: Р = 100: 5: 1, (2)

где БПК - полная биологическая потребность в кислороде, мг О/л;

N - концентрация азота, мг/л;

Р - концентрация фосфора, мг/л.

Способ биохимической очистки обычно применяется для очистки промышленных сточных вод после обработки их физико-химическими методами, при помощи которых из вод удаляются не поддающиеся биологическому разрушению токсичные вещества и снижается концентрация загрязнений. Возможность биохимической очистки сточных вод определяется соотношением БПК полного к ХПК, которое должно быть меньше 0,4.

К числу преимуществ метода биохимической очистки относится способность разрушать различные классы органических соединений, однако, ряд органических соединений не подвергаются биохимическому окислению. Отдельные органические соединения распадаются, но продукты распада не окисляются до углекислого газа и воды Эти продукты распада могут быть иногда даже более токсичны, чем исходные вещества. Иногда биохимическое окисление невозможно из-за высокой концентрации загрязнений в сточной воде, оказывающей токсичное влияние на микроорганизмы.

Биохимический распад того или иного вещества зависит от ряда химических и физических факторов, как, например, наличия функциональных групп в молекуле, величины молекулы и ее структуры, растворимости вещества, образования промежуточных продуктов и их взаимодействия и других. Образование промежуточных продуктов обуславливается также биологическими факторами - сложностью обменных процессов в клетках микроорганизмов, вариабельностью штаммов бактерий, влиянием среды и длительностью адаптации микроорганизмов. Рассмотрим литературные данные о связи структуры некоторых веществ, содержащихся в сточных водах коксохимического производства, и их способности к биохимическому распаду. Экспериментально доказано, что бензол в незначительной степени окисляется микроорганизмами, производные его с короткой боковой целью, например, толуол, разлагаются несколько легче. Двухатомные фенолы успешно окисляются адаптированным комплексом бактерий, причем пирокатехин вдвое быстрее, чем резорцин. Наиболее трудно окисляется гидрохинон. При окислении многоатомных фенолов образуются окрашенные хиноидные соединения. Возможность биохимического окисления фенола известна уже давно. В Советском Союзе для очистки от фенола сточных вод коксохимического производства с 1952 года используется бактериальный комплекс - фенолразрушающие микроорганизмы, выделенные из почвы коксохимического завода Киевским институтом общей и коммунальной гигиены (Путилиной Н.Т. с сотрудниками). Применив этот комплекс для обогащения активного ила, нарастающего при очистке фенольной сточной воды в аэротенках, Киевский институт общей и коммунальной гигиены и Гипрококс назвали метод очистки "микробным". Это условное название употребляется и до настоящего времени, хотя по существу это биохимическая очистка активным илом, обогащенным фенол - и роданразрушающими микроорганизмами.

Работами многих исследователей установлена последовательность разрушения фенола микроорганизмами и выделены образующиеся при этом промежуточные продукты. Биохимическое окисление фенола идет стадийно через пирокатехин, цис-цис-муконовую кислоту, лактон, в - кетоадипиновую кислоту, янтарную кислоту, уксусную кислоту. Конечными продуктами биохимического окисления фенола являются углекислый газ и вода.

В сточных водах коксохимического производства содержатся роданиды. Исследования показали, что биохимическое окисление последних роданразрушающими микроорганизмами идет с образованием ионов аммония и сульфата. Эффективность биохимической очистки зависит от ряда факторов, основными из которых являются: температура, реакция среды (pH), кислородный режим, наличие биогенных элементов и токсичных веществ, уровень питания.

Оптимальной температурой, при которой хорошо развиваются фенол - и роданразрушающие микроорганизмы, является 30-35°С. Активная жизнедеятельность данных микроорганизмов сохраняется при 20-40°С. Если температурный режим не соответствует оптимальному, то рост культуры, а также скорость обменных процессов в клетке заметно ниже расчетных значений. Наиболее неблагоприятное влияние на развитие культуры оказывает резкое изменение температуры. При аэробной очистке отрицательное влияние повышенной температуры усугубляется еще вследствие соответствующего уменьшения растворимости кислорода.

Концентрация водородных ионов (pH) существенно влияет на развитие микроорганизмов. Фенол - и роданразрушающие микроорганизмы лучше всего развиваются в среде с pH 6,5-8,0. Отклонение pH за пределы 6 - 9 влечет за собой уменьшение скорости окисления вследствие замедления обменных процессов в клетке, нарушения проницаемости ее цитоплазматической мембраны и др., что приводит к ухудшению биохимической очистки. При pH ниже 5 и выше 10 происходит гибель микроорганизмов. Если значения температуры и pH выходят за пределы оптимальных и, особенно, допустимых величин, необходимо корректировать эти параметры в сточных водах, поступающих на биохимическую очистку. В фенольных сточных водах коксохимического производства содержится значительное количество аммиака и солей аммония; незначительное количество аммонийного азота потребляется в процессе жизнедеятельности фенол - и роданразрушающих микробов, но одновременно при окислении роданидов из азота роданид-ионов образуется дополнительное количество аммонийного азота. По существующим нормам сброса сточных вод в городскую канализацию для доочистки на городских очистных сооружениях содержание аммонийного азота в очищенных фенольных водах на 2 и более порядков выше допустимого.

Полная биохимическая очистка сточных вод от аммонийного азота включает две стадии: нитрификацию - окисление аммонийного азота под действием нитрифицирующих бактерий в присутствии кислорода воздуха вначале до нитритов, а затем до нитратов; денитрификацию - восстановление нитритов и нитратов под действием комплекса денитрифицирующих бактерий в присутствии необходимого количества органических соединений. Процесс нитрификации успешно протекает при pH 7-9; при окислении аммонийного азота до нитритов происходит образование кислоты (из двух молей азота по реакции образуется четыре моля водородного иона), которую необходимо нейтрализовать для нормального протекания процесса нитрификации. При денитрификации происходит образование гидроксильного иона (по реакции при восстановлении двух молей нитратов до атомарного азота выделяется два гидроксильных иона О Н-), то есть некоторая компенсация потерянной при нитрификации щелочности воды. Поэтому для уменьшения расхода щелочных агентов на стадии нитрификации необходимо организовать процесс очистки таким образом, чтобы максимально использовать щелочность, образующуюся на стадии денитрификации. При денитрификации можно исключить подачу кислорода воздуха или оставить ее в незначительном количестве, поскольку денитрифицирующие бактерии используют кислород, связанный в нитриты и нитраты. По данным ВУХИН при денитрификации содержание кислорода в воде не должно превышать 0,1 мг/л.

В качестве органического питания на стадии денитрификации предложен ряд легкоокисляемых органических соединений, а также избыточный активный ил или часть неочищенной фенольной воды. В процессе потребления микроорганизмами питательных веществ, содержащихся в сточных водах, в микробной клетке протекают два взаимосвязанных и одновременно происходящих процесса - синтез протоплазмы и окисление органических веществ. В процессе окисления клетки потребляют кислород, растворенный в сточной воде. В аэробных биологических системах подача воздуха (а также чистого кислорода или воздуха, обогащенного кислородом) должна обеспечивать постоянное наличие в воде растворенного кислорода не ниже 2 мг/л. Система аэрации обеспечивает также перемешивание воды и постоянное поддерживание ила во взвешенном состоянии. В технической литературе за меру уровня питания принимают величину сугочной нагрузки по загрязнениям в расчете на 1 м3 очистного сооружения, или на 1 г сухой биомассы, или на 1 г беззольной части биомассы. В практике оценки очистных сооружений коксохимических предприятий оперирует, в основном, величиной суточной нагрузки по отдельным загрязнениям и по ХПК на 1 м 3 аэротенка, которую принято называть окислительной мощностью сооружения. Обычно эту величину выражают в килограммах кислорода на 1 м 3 в сутки (кг О/м 3 в сутки).

Токсичным действием на биохимическое окисление могут обладать как органические, так и неорганические соединения, а также металлы. В результате токсичного действия веществ задерживается рост и развитие микроорганизмов или они погибают. В сточных водах коксохимического предприятия содержится большое количество веществ, которые тормозят развитие микроорганизмов, а некоторые могут привести к их гибели.

Отрицательное воздействие на процесс биохимической очистки сточных вод оказывает повышенная минерализация стока. Верхним пределом минерализации производственных сточных вод, поступающих в аэротенки, считается содержание солей в количестве 10 г/л. Резкие колебания в степени минерализации неблагоприятно отражаются на качестве очищенного стока. Осмотический шок, вызываемый минеральными солями, приводит к выделению органического вещества из клеток ила, что ведет к нарушению окислительных процессов. Низкие гидравлические нагрузки и высокие концентрации активного ила делают менее заметным влияние повышенных концентраций солей на эффективность работы аэротенков. Самыми важными факторами формирования биоценоза илов биохимических установок являются состав очищаемых сточных вод и величина нагрузки на ил. Действие других факторов - температуры, перемешивания, концентрации растворенного кислорода - практически не изменяет качественного состава илов, но влияет на количественное соотношение различных групп микроорганизмов. Основными факторами, влияющими на продолжительность процесса биохимической очистки, являются концентрация поступающих загрязнений, необходимая степень очистки, химическая природа загрязнения и концентрация активного ила.

Для проектирования биохимических установок коксохимических предприятий обычно принимается следующий состав сточных вод, поступающих в аэротенки (в мг/л): фенолы 400, роданиды 400, цианиды 20, общие масла 35, аммиак летучий до 250, аммиак общий 500, ХПК 3000. Состав очищенной воды по основным загрязнениям при проектировании современных биохимических установок (в мг/л): фенолы 0.5 - 2; роданиды 1-3; цианиды до 5, общие масла 10-20, ХПК 300-500. Общая загрязненность сточных вод до и после очистки достаточно полно характеризуется аналитически определяемой величиной ХПК (химической потребности в кислороде для окисления). Для биохимического окисления веществ обобщающим показателем обычно является величина БПК (биологической потребности в кислороде), которая определяется экспериментально при биохимическом окислении веществ в течение 5-ти суток - БПК 5 , 20-ти суток - БПК 20 или БПК полн.). В фенольных стоках коксохимического производства большая часть загрязнений биохимически трудно окисляется, поэтому для этих вод более показательна величина ХПК. Определенное представление о некоторых веществах в сточных водах коксохим производства дают литературные данные об удельных значениях ХПК отдельных веществ (в мг О/мг вещества), а также о соотношении БПК и ХПК - чем оно ниже, тем более легко происходит биохимическое окисление вещества.

Таблица 4. ХПК и соотношении БПК и ХПК в сточных водах коксохимического производства

Повышая дозу активного ила в аэротенках, следует иметь в виду, что при высокой концентрации биомассы (в практике можно поддерживать 5-6 г/л) не сохраняется прямая пропорция между концентрацией ила и скоростью окисления загрязнений. Скорость биохимического окисления уменьшается при повышении начальной дозы ила из-за ухудшения питания отдельных клеток. Сточные воды различных предприятий могут сильно различаться по содержанию отдельных загрязнений, следовательно, необходимо экспериментально определять оптимальную концентрацию активного ила для каждой биохимической установки.

При двухступенчатой очистке сточных вод на первой ступени (обесфеноливании) активный ил (точнее - биомасса) обычно мелкодисперсный, плохо отстаивающийся, поэтому для поддержания необходимой концентрации биомассы в аэротенке в них осуществляется возврат очищенной воды (до 50% и более) из сборника обесфеноленных вод.

На второй ступени очистки (обезроданивании) образуются хорошо оседающие хлопья активного ила (за счет обогащения биомассы простейшими микроорганизмами, которые являются индикатором достаточно глубокой очистки). Возврат сгущенного активного ила из вторичных отстойников технически должен быть организован таким образом, чтобы не разрушать хлопья активного ила (поэтому предпочтительно возврат производить с помощью эрлифтного, а не центробежного насоса). Целесообразно перед подачей возврата ила в аэротенок направлять его через специальную емкость с аэрацией сжатым воздухом (регенератор ила). Повышение концентрации активной биомассы в аэротенках можно осуществлять переоборудованием их в биотенки, то есть заполнением части объема аэротенка неподвижно закрепленным пористым материалом (на котором нарастает и закрепляется биопленка), либо использованием плавающим в объеме аэротенка твердым сорбентом (биосорбционная очистка).

Резкие колебания концентрации поступающих со сточной водой загрязнений приводят к нарушению биохимической очистки. Чтобы компенсировать эти колебания биохимические установки оборудуются усреднителями. Стабилизировать, а также повысить глубину очистки сточных вод позволяет переоборудование усреднителей в предаэротенки: в усреднители подается очищенная сточная вода с активным илом в количестве 10 - 20 % от поступающей фенольной воды, и несколько увеличивается количество подаваемого для перемешивания воды в усреднителе сжатого воздуха - до 30м 3 /м 3 поступающей сточной воды. Происходящее в предаэротенке небольшое разбавление исходной воды очищенной водой также благоприятно влияет на дальнейшую биохимическую очистку. Опыт эксплуатации показал, что в предаэротенке окисляется 25-30% поступающих фенолов, существенно уменьшается отрицательное влияние залповых сбросов на жизнедеятельность активного ила в аэротенках.

Эффективность биохимической очистки во многом определяется конструкцией аэрационных систем. На отечественных биохимических установках испытаны различные аэрационные системы: пневматическая, пневмомеханическая, механическая. Выбор аэрационной системы должен основываться на сравнении их эффективности, производительности по кислороду, степени использования кислорода воздуха, а также на оценке эксплуатационных достоинств и недостатков. Кроме того, для обеспечения достаточно полной биохимической очистки аэрационная система должна обеспечивать также хорошее перемешивание сравнительно больших количеств активного ила, а при значительном объеме аэрационных сооружений не вызывать переохлаждения сточной воды (это особенно значимо при окислении роданидов).

Пневматическая аэрация через перфорированные металлические или пластмассовые трубы (среднепузырчатая система аэрации) дает очень низкий коэффициент использования кислорода воздуха - около 2%; кроме того поддержание активного ила во взвешенном состоянии недостаточно удовлетворительное. Достаточно высокие окислительные способности (то есть количество кислорода, вносимого в единицу времени) и степень использования кислорода воздуха отмечены при применении пневмомеханической системы аэрации. Однако сложность эксплуатации этих систем (связанная, в частности, с тяжелыми условиями работы электродвигателей и редукторов в парах воды и химзагрязнений над аэротенком) была основной причиной того, что они не получили распространения. Кроме того, применение механического поверхностного аэратора вызывает существенное снижение температуры очищаемой воды, что недопустимо в зимнее время, особенно на заводах Украины. Современные биохимические установки на коксохимических заводах - довольно мощные сооружения. С учетом климатических условий, эксплуатационных затрат на обслуживание и ремонт, возможностей управления процессом биохимической очистки наиболее целесообразно сооружать центральную воздуходувную станцию, а в качестве аэрационной системы использовать эрлифтные аэраторы, которые одновременно обеспечивают хорошее перемешивание жидкости в аэротенке. Первые испытания эрлифтной системы аэрации, проведенные в 70-х годах Несмашным на Криворожском коксохимическом заводе, показали безусловные преимущества этой системы аэрации. В последующие годы благодаря систематическим исследованиям и разработкам, проведенным в ВУХИНе (В.Г. Плаксиным, В.М. Кагасовым, А.В. Говорковым, А.В. Путиловым, И.В. Пименовым и др.) была создана оптимальная система эрлифтной аэрации, которая обеспечивает эффективную аэрацию при высоких нагрузках по сточной воде и воздуху, интенсивное перемешивание жидкости и необходимые придонные скорости жидкости в емкостях большого объема. Степень использования кислорода воздуха б зависимости от нагрузки по воздуху на аэратор и уровня жидкости в емкости составляет 10-25%. Основные технические характеристики системы для варианта установки в аэротенке объемом 400 м3 и уровне жидкости 4 м: расход воздуха 2000 (и более) м 3 /ч, количество аэраторов 45-70, диаметр аэраторов 0,5 - 0,3 м, высота аэратора 1-2 м, приведенная скорость жидкости в аэраторе 1,5 - 2,5 м/с, придонные скорости жидкости более 0.3 м/с, кратность циркуляции не менее 50 l/ч, коэффициент использования кислорода 20-25%, количество вносимого кислорода 120-150 кг/ч, эффективность аэрации 2.35 - 2.95 кг кислорода/квт. ч, перепад давления на газораспределительном устройстве 1000-1500 Па, размеры пузырей не более 6 мм. На большинстве действующих биохимических установок наиболее распространена в настоящее время эрлифтная система аэрации с коэффициентом использования кислорода 12%. Практический опыт работы показал, что высота аэратора должна быть на 0,3м ниже уровня воды в аэротенке, чтобы предотвратить образование волны.

При эксплуатации аэротенков в них наблюдается образование большого количества пены. Причиной образования устойчивых пен является присутствие в сточных водах поверхностно-активных веществ и стабилизаторов пены: тонкодисперсных порошков кокса, пека; жидких полимеров; компонентов каменноугольной смолы, входящих в нерастворимые в толуоле вещества. Стабилизатором пены является также мелкодисперсный активный ил. По мере укрупнения активного ила его стабилизирующее воздействие на пену снижается. Гидравлический способ гашения пены малоэффективен для аэротенков с большой поверхностью, так как трудно обеспечить распределение воды равномерно по всей поверхности, к тому же большое количество воды, подаваемой для гашения пены, нарушает нормальный процесс очистки. Наиболее эффективно использовать аэротенки с перекрытием и подсводовым пространством высотой до 2 м: при этом пенс разрушается поступающей сточной водой и очищенной водой, возвращаемой из вторичного отстойника. Практика показала, что высота слоя пены не превышает 1,5 - 2м. Наличие перекрытия аэротенка позволяет осуществить организованный выброс отработанного воздуха и реализовать мероприятия по очистке его от вредных выбросов в атмосферу. Инженерное оформление схемы биохимической очистки принципиально изменилось за два последних десятилетия: подача воды в аэротенки производится насосами, а не самотеком, это облегчает регулировку гидравлических нагрузок, контроль расходов, позволяет в процессе эксплуатации изменять направление потоков с наименьшими затратами; появились и хорошо зарекомендовали себя металлические аэротенки в надземном исполнении (это, в частности, исключает загрязнение окружающей территории за счет неплотностей сооружений, характерных при сооружении аэротенков из сборного железобетона).

При проектировании биохимических установок приняты следующие основные расчетные зависимости (их необходимо также использовать в процессе эксплуатации при анализе работы установки): Объем аэротенков 1-й и 2-й ступеней (V) определяется на основе окислительной мощности по фенолам и роданидом соответственно (в м 3)

С 1 и С 2 - концентрации окисляемого вещества соответственно до и после очистки, мг/л;

ОМ - окислительная мощность аэротенка (в кг окисляемого вещества на 1 м 3 аэротенка в сутки).

Окислительная мощность зависит от исходной концентрации вещества, состава сточных вод, эффективности аэрации и других факторов; определяется экспериментально. Для сточных фенольных вод коксохимических предприятий окислительная мощность по фенолам находится в пределах 0,6-1,2; для роданидов 0,6 - 0,4 (то есть в 2 - 3 раза ниже, чем для фенолов).

Расход воздуха в аэротенки (Q в) рассчитывается по формуле (в нм 3 /ч):

где: L - количество сточной воды, м 3 /ч;

ХПК 1 и ХПК 2 - окисляемость сточной воды соответственно до и после очистки (мг О / л воды);

К 1 - коэффициент запаса (обычно принимают 1,2 - 1,25);

0,21 - объемная доля кислорода в воздухе;

0,8 - коэффициент использования растворенного кислорода для окисления загрязнений;

1,429 - плотность кислорода при нормальных условиях (кг/нм 3);

q - коэффициент использования кислорода воздуха для данной системы аэрации (%).

Широко применяют для очистки хозяйственно-бытовых и промышленных сточных вод от многих растворённых органических и некоторых неорганических веществ (H2S; сульфидов; NH3; нитритов и др.).

Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания в процессе жизнедеятельности, т.к. органические вещества для них являются источником углерода.

Достоинства: несложное аппаратное оформление, невысокие эксплуатационные затраты.

Недостатки: большие капитальные затраты, необходимость предварительного удаления токсичных веществ, строгое соблюдение технологического режима очистки. Сточные воды характеризуются: БПК – биохимическая потребность в O 2 . мг O 2 / г или мг O 2 / л не включая процессы нитрификации. ХПК – потребность O2 для окисления всех востановителей. ХПК > БПК.

Если в присутствии O 2 – то аэробный процесс (t o =20-40 o С). Если в отсутствии O 2 – то анаэробный (для обезвреживания остатков).

При биохимической очистке вещества, содержащиеся в сточных водах не утилизируют, а перерабатывают в избыточный ил, так же требующий обезвреживания. Активный ил (буровато-жёлтые комочки) представляет собой сложный комплекс микроорганизмов различных классов, простейших микроскопических червей, инфузорий, водорослей, дрожжи и др. Хороший источник C – ненасыщенные органические соединения.

Насыщенные органические соединения труднее усваиваются.

В клетку легко проникают растворённые органические вещества, углеводороды; труднее вещества, молекулы которых содержат полярные группы, этанол > этиленгликоль > глицерин сахара, имеющие несколько оксигрупп. Ещё медленнее диффундируют в клетку. Жирные кислоты > окси-кислоты > аминокислоты. Ионы аммония легко проникают в клетку!

Способность микроорганизмов к адаптации обеспечивают широкое распространение биологической очистки сточных вод.

Чем хуже осушается ил, тем более высокий его иловый индекс. I гр. БПКполн/ХПК =0,2 – группа сточных вод (пищевая промышленность, спск, белково-витаминн…). Органические загрязнения этой группы не токсичны для микробов. II гр. БПКполн/ХПК =0,10-0,02 – Сточные воды коксования, сланцевые, содовые воды. Эти воды после механической очистки могут быть направлены на биохимическое окисление. III гр. БПКполн/ХПК =0,01-0,001 – сточные воды чёрной металлургии, сульфид, хлорид, ПАВ и др. Необходима механическая очистка и физико-химическая очистка. IV гр. БПКполн/ХПК Турбулизация (интенсивное перемешивание, активный ил находится во взвешенном состоянии) сточных вод увеличивает объём поступление питательных веществ и O2 к микроорганизмам, что повышает скорость очистки сточных вод.

Доза активного или зависит от илового индекса.

Чем меньше иловый индекс, тем большую дозу активного или необходимо подавать.

Увеличение t o => увеличивает объём биохимической реакции. t o > 30 o может погубить микроорганизмы. Практически 20-30 o . Ядом для активного ила – соли тяжёлых металлов. Соли этих металлов снижают скорость очистки (Sb, Ag, Cu, Hg, Co, Ni, Pb и т.д).

Для окисления органических вещёств микроорганизмами необходим O 2 ; растворённый в сточных водах, т.е. аэрация – растворение O 2 в H 2 O.

Для успешного протекания реакций биохимического окисления необходимо присутствие в сточных водах соединений биогенных элементов и микроэлементов: (N, P, K).

Недостаток N – тормозит окисление и образование труднооседающего ила.

Недостаток P – приводит к образованию нитчатых бактерий, что является причиной вспухания активного ила.

Биочистка в природных условиях.

Поля орошения – это специальные подготовленные земельные участки; очистка идёт под действием микрофлоры солнца, воздуха и под влиянием живой растительности, растений.

Поля орошения лучше всего устраивать на печаных или суглинистых почвах. Грунтовые воды не выше 1.25 м от поверхности.

В почве полей орошения находятся бактерии, дрожжи, грибы, водоросли и др. Сточные воды содержат бактерии. Если на полях не выращиваются сельскохозяйственные культуры, и они предназначены только для биологической очистки сточных вод, то они называются полями фильтрации.

Поля орошения после биологической очистки сточных вод используется для выращивания зерновых и силосных культур, трав, овощей. Поля орошения имеют следующие преимущества перед аэротенками: 1 – снижается капитальные и эксплуататорские затраты; 2 – вовлекаются в сельскохозяйственный оборот малопродуктивные земли. 3 – обеспечивается получение устойчивых и высоких урожаев.

Механизм:

Сточные воды в процессе биологической очистки проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя плёнку, а проникающие O2 окисляет органические вещества, превращая их в минеральные соединения.

Сточные воды на поля орошения могут поступать через полиэтиленовые или асбоцементные трубчатые увлажнители, т.е. подпочвенное орошение.

Биологические пруды – каскад прудов, состоящий из 3-5 ступеней. С естественной аэрацией (глубина их 0,5-1м). Хорошо прогревается солнцем. С искусственной аэрацией (механическим или пневматическим путём, компрессором) (глубина – 3,5м). Нагрузка по загряз нениям повышается в 3-3,5 раза.

Очистка в искуственных сооружениях.

Аэротенки – железобетонные аэрирующие резервуары. Арированная смесь сточной воды + активный ил.

    Схема установки для биологического очистки.
  1. – первичный отстойник;
  2. – предаэратор (для предварительной аэрации 15-20 мин);
  3. – аэротенк;
  4. – регенератор (25%);
  5. – вторичный отстойник;
Аэрация необходима для насыщения H2O – O2 и поддержания ила во взвешенном состоянии. Переда аэротенком сточная вода должна содержать не > 150 мг/л взвешенных частиц и не > 25 мг/л нефтепродуктов: t°H2O=6-30°С; PH – 6,5-9. глубина аэротенков 2-5 м. Открытый бассейн, оборудованный устройствами для принудительной аэрации. 2-х, 3-х, 4-х коридорные.
    Аэротенки подразделяются:
  1. по гидродинамическому режиму (аэротенки – вытеснители(а); аэротенки – смесители(б); промежуточного типа – с рассредоточенным водородом сточных вод);
  2. по способу регенерации активного или (с отдельной регенерации и без отдельной);
  3. по нагрузке на активный ил (высоконагруженные для неполной очистки и обычные или низконагруженные);
  4. по количеству ступеней (1-х, 2-х, многократные);
  5. по режиму ввода сточных вод (проточные, полупроточные, контактные и др.);
  6. по конструктивным признакам:

При наличии вредных примесей и БПК > 150 мг/л – с регенерацией.

Полезная информация:

Похожие публикации